Principal Research Results

Development of Electrochemical Reduction Process for Oxide Nuclear Fuel

- To Integrate Metal Fuel FBR Cycle with LWR Cycle -

Background

The metal fuel cycle, consisting of metal fuel FBR and pyrochemical reprocessing, is one of the promising options in the next generation nuclear fuel cycle technology. Since the LWR cycle is an oxide fuel technology, the oxide fuels of the LWR cycle have to be converted to metals for supplying them to the metal fuel FBR cycle. The electrochemical reduction process described in Fig.1 is expected to be the most efficient oxide reduction technique.

Objectives

To characterize appropriate electrolysis conditions for UO_2 reduction; to investigate parameters for designing engineering scale equipments; to demonstrate the production of uranium metal from UO_2 through the electrochemical reduction process.

Principal Results

1. Appropriate electrolysis conditions

 UO_2 reduction tests were conducted in LiCl (650°C), LiCl-KCl eutectic (600°C: low melting point) and CaCl₂ (820°C: strong affinity for oxygen) salt baths. As shown in Fig.2, the UO_2 sample was completely reduced to porous uranium metal in LiCl. But in LiCl-KCl eutectic and in CaCl₂, only the surface layer was reduced to the metal and the UO_2 remained inside. It was suggested that the reduction rate should be determined by the transportation of oxide ion (O^{2-}) from the inside to the bulk salt and that the affinity for oxygen was ineffective. ¹

The reduction will cause a gap formation in the UO_2 sample because the density of UO_2 is about 60% as much as that of uranium metal. Then the molten salt will permeate into the gap and O^{2-} will be discharged to the bulk salt through the molten salt pass. In LiCl-KCl eutectic and in CaCl₂, the molten salt pass was possibly closed with by-products (*i.e.*, Li₂O or uranium metal) and then the reduction did not progress inside.

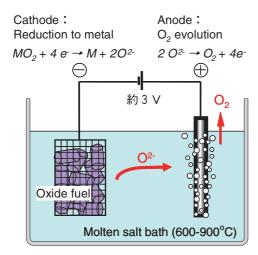
2. Production of uranium metal from UO₂

LiCl was employed as the salt bath and electrochemical properties such as reduction potentials of UO_2 and LiCl (Fig.3), anode reactions and current efficiency were clarified. ¹ Then, it was demonstrated in the 100g-scale UO_2 reduction under optimum conditions followed by the high temperature salt distillation that the uranium metal ingot free from LiCl could be produced from the UO_2 feed with high efficiency, as shown in Fig. 4. ²

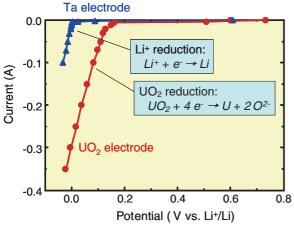
It was concluded that practical electrochemical reduction equipments could be designed on the basis of the experimental results, where 5-10 kg of oxide fuel loaded in a cathode basket could be reduced to metal within 10 hours.

This work was entrusted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

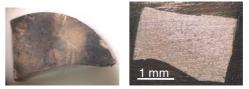
Future Developments


 $MOX~(PuO_2-UO_2)$ as well as UO_2 was converted to metal in a small scale reduction test. ³ In future, more practical system will be investigated to demonstrate the process flow sheet.

Main Researcher: Yoshiharu Sakamura,


Senior Research Scientist, Advanced Nuclear Fuel Cycle Sector, Nuclear Technology Research Laboratory

References


- 1 Y. Sakamura, M. Kurata and T. Inoue, "Electrochemical reduction of UO₂ in molten CaCl₂ or LiCl", *J. Electrochem*. Soc., 153 (3), D31-D39 (2006).
- 2 Y. Sakamura, T. Omori and T. Inoue, "Application of electrochemical reduction to produce metal fuel material from actinide oxides", submitted for publication in *Nucl. Technol*.
- 3 M. Iizuka, Y. Sakamura and T. Inoue, "Electrochemical reduction of (U-40Pu-5Np)O₂ in molten LiCl electrolyte", *J. Nucl.* Mater., 359, 102-113 (2006).

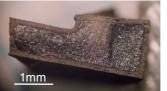
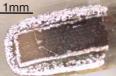
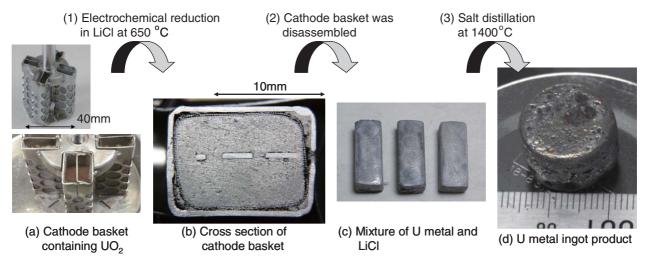

Fig.1 Schematic diagram of electrochemical reduction process. During electrolysis, O² is released into molten salt and actinide metal remains at the cathode. Oxygen gas is evolved at the anode

Fig.3 Polarization curves of UO₂ and tantalum electrodes in LiCl at 650°C


Appearance Polished cross section
(a) LiCI: completely reduced to metal

Cross section


(b) LiCl-KCl eutectic: surface layer was only reduced

Appearance Polished cross section
(c) CaCl₂: surface layer was only reduced
(Electrolysis was conducted twice)

Fig.2 UO_2 samples after electrochemical reduction in (a)LiCl, (b)LiCl-KCl eutectic and (c)CaCl₂ salt baths

Fig.4 Production of U metal ingot from UO₂ through the sequence of electrochemical reduction and salt distillation (100g-scale test)