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Background
Management of pipe wall-thinning, especially Flow Accelerated Corrosion (FAC)＊1 of carbon steel, is a very important

subject in coolant systems of power plants. Construction of a prediction equation for pipe wall-thinning by FAC based on mechanistic
model is desired for the rational management in addition to the wall thickness measurements. Because, the thinning tendencies in an
area with a difficult wall thickness measurement or an area with little frequency of inspection can be evaluated by the equation.
Moreover, the effect of modification of the operating condition on the lifetime of piping, such as improvement of water chemistry and
power uprate, can be evaluated. The major influence factors of FAC, such as material, flow condition, temperature, and water
chemistry, should be included in the mechanistic model and the prediction equation. 

Objectives
The purpose of this study is to construct the FAC model and the prediction equation of wall-thinning including the major

effective factors;

Principal Results
1. Effect of hydraulic factors (mass transfer coefficient) on FAC

As an evaluation method of mass transfer coefficient, the essential hydraulic factor affecting FAC, which can be applied to
strong eccentric turbulent flow condition with high FAC susceptibility, a new mass transfer model was built by considering the
increase of both averaged and fluctuation velocity at near-wall region (Fig. 1). The model was applied to experimental data of FAC
test, and the validity of the consideration of fluctuation velocity (turbulent velocity＊2) in the model was confirmed (Fig. 2). 

2. Effect of water chemistry and material factors on FAC
The FAC model focused on the water chemistry and material was constructed by assuming the following processes (Fig. 3).

1) The saturated layer of iron and the diffusion layer are formatted on the surface of material. The rate-determining step of FAC is the
diffusion of the soluble iron species between bulk solution and saturated layer through the diffusion layer. 2) The stability of surface
oxide is influenced by the chemical condition in the saturated layer, which is determined by the diffusion of oxygen from bulk solution
and consumption of oxygen by corrosion. 

The thermodynamic solubility of iron, the major water chemical factor of FAC, was evaluated based on the model (Fig. 4).
The effect of dissolved oxygen concentration was also taken into consideration in the model. The model reproduces the experimental
results＊3, which indicate the drastic decrease of FAC rate by the increase in dissolved oxygen concentration (Fig. 5).

3. Development of prediction equation for pipe wall-thinning by FAC
The prediction equation for pipe wall-thinning was constructed based on the above FAC model. The calculated results by the

equation reproduce the well-known temperature dependence of FAC and indicate the temperature peak of FAC rate at 140℃ (Fig. 6).

Future Developments
The evaluation of the oxide film thickness will be included in the model. The validity of the present model will be confirmed

by using some experimental results and the wall-thinning rate of piping at actual power plants.
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Development of Prediction Model for Pipe Wall-Thinning
by Flow Accelerated Corrosion (FAC)

＊1：One of the wall-thinning phenomenon of carbon steel and low alloy steel piping. FAC was caused by the dissolution of surface oxide film
accelerated by the turbulence of flow. 

＊2：Time averaged value of absolute difference between instantaneous local velocity and local mean velocity
＊3：Results of a joint research project conducted by the Japan Atomic Power, Inc., University of New Brunswick (Canadian), and CRIEPI.
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Fig.2  Correlation of FAC rate and mass transfer 
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Fig.1  Concept of mass transfer model in 
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Fig.3  Schematic of FAC model 
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Fig.5  Effect of dissolved oxygen on the FAC rate 
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Fig.6  Effect of temperature on the FAC rate 

Increase of mean and turbulent velocity at near-wall region in 
eccentric flow was considered and combined, and an imaginary 
velocity profile was applied to the mass tranfer coefficient 
evaluation. 

By considering the turbulent velocity (u’) in the FAC 
experiment condition, the correlation of FAC rate and mass 
transfer showed good improvement, and consequently, 
qualitative validity of the mass transfer model was confirmed. 

FAC model under steady-state condition was developed by 
considering the diffusion and consumption of oxygen in 
addition to the the dissolusion and diffusion of Fe. 

The maximum of solubility appears at around 100℃. The value 
in a neutral solution (pH = 7.0) is about 20 times higher than in 
weak alkaline solution (pH = 9.2). 

The present FAC model reproduces the drastic decrease of FAC 
rate by the increase in dissolved oxygen concentration under 
neutral and weak alkaline conditions. 

The calculated results indicate the temperature peak of 
FAC rate at 140℃. The prediction equation qualitatively 
reproduces the well-known behavior of FAC. 
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